Group connectivity in line graphs
نویسندگان
چکیده
Tutte introduced the theory of nowhere zero flows and showed that a plane graph G has a face k-coloring if and only if G has a nowhere zero A-flow, for any Abelian group A with |A| ≥ k. In 1992, Jaeger et al. [9] extended nowhere zero flows to group connectivity of graphs: given an orientationD of a graph G, if for any b : V (G) → Awith v∈V (G) b(v) = 0, there always exists a map f : E(G) → A − {0}, such that at each v ∈ V (G), e=vw is directed from v to w f (e) − e=uv is directed from u to v f (e) = b(v) in A, then G is A-connected. Let Z3 denote the cyclic group of order 3. In [9], Jaeger et al. (1992) conjectured that every 5-edge-connected graph is Z3-connected. In this paper, we proved the following. (i) Every 5-edge-connected graph is Z3-connected if and only if every 5-edge-connected line graph is Z3-connected. (ii) Every 6-edge-connected triangular line graph is Z3-connected. (iii) Every 7-edge-connected triangular claw-free graph is Z3-connected. In particular, every 6-edge-connected triangular line graph and every 7-edge-connected triangular claw-free graph have a nowhere zero 3-flow. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Incidence cuts and connectivity in fuzzy incidence graphs
Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملOn the second order first zagreb index
Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...
متن کاملToughness of the Networks with Maximum Connectivity
The stability of a communication network composed of processing nodes and communication links is of prime importance to network designers. As the network begins losing links or nodes, eventually there is a loss in its effectiveness. Thus, communication networks must be constructed to be as stable as possible, not only with respect to the initial disruption, but also with respect to the possible...
متن کاملThe augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011